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Abstract

Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and

treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle

red-attack damage, as red-attack has a more heterogeneous distribution under these conditions. In this study, mountain pine beetle red-attack

damage was detected and mapped using a logistic regression approach with a forward stepwise selection process and a set of calibration data

representing samples of red-attack and non-attack from the study area. Variables that were considered for inclusion in the model were the enhanced

wetness difference index (EWDI) derived from a time series of Landsat remotely sensed imagery, elevation, slope, and solar radiation (direct,

diffuse, and global). The output from the logistic regression was a continuous probability surface, which indicated the likelihood of red-attack

damage. Independent validation data were used to assess the accuracy of the resulting models. The final model predicted red-attack damage with

an accuracy of 86%. These results indicate that for this particular site, with mixed forest stands and variable terrain, remotely sensed and ancillary

spatial data can be combined, through logistic regression, to create a mountain pine beetle red-attack likelihood surface that accurately identifies

damaged forest stands. The use of a probabilistic approach reduces dependence upon the definition of change by the application of thresholds

(upper and lower bounds of change) at the image processing stage. Rather, a change layer is generated that may be interpreted liberally or

conservatively, depending on the information needs of the end user.

D 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When mountain pine beetle populations reach epidemic

levels, they generally spread through mature pine stands,

potentially resulting in extensive mortality of large-diameter

trees. Virtually all species of pine within the mountain pine

beetle’s range, are suitable hosts (Furniss & Schenk, 1969;

Smith et al., 1981); however, due to the size, intensity, and the

commercial impact of epidemics, lodgepole pine (Pinus

contorta Dougl. ex Loud. var. latifolia Engelm.) is the species

most severely impacted by the beetle and, therefore, is

considered the mountain pine beetle’s primary host. Native to

North America, the mountain pine beetle’s current biological
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range is believed to extend from northern British Columbia and

western Alberta south to northwestern Mexico, and from the

Pacific Coast eastward to the Black Hills of South Dakota.

Suitable habitat for the beetle has been found at elevations

ranging from sea level in British Columbia to 3353 m in

southern California (Amman et al., 1989).

The impact of mountain pine beetle is evident throughout its

biological range. In the United States, the area affected by the

beetle increased from a total of approximately 156,090 ha in

1999 to 898,040 ha in 2003. In British Columbia, the mountain

pine beetle population has reached epidemic levels, with the area

of infested forest increasing from approximately 164,000 ha in

1999 to 7,089,900 ha in 2004 (Westfall, 2005). The biological

range of the primary host, lodgepole pine, exceeds the current

range of the mountain pine beetle; however, recent research has

indicated that the beetle is expanding into new geographic areas

with the range expansion believed to be related to changes in
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climate (Carroll et al., 2004; Logan & Powell, 2004). The two

factors that have contributed to the successful expansion of the

beetle population in British Columbia include the large

amount of mature lodgepole pine on the land base, which

has tripled in the last century as a result of intensive fire

suppression activities (Taylor & Carroll, 2004), and several

successive years of favorable climate conditions, resulting in

an increase in suitable areas for brood development and

success (Carroll et al., 2004).

The phenology of the mountain pine beetle and the

associated host response have implications for the timing at

which surveys of beetle damage are undertaken. In general,

mountain pine beetles in British Columbia produce a single

generation per year (Carroll & Safranyik, 2004; Safranyik et

al., 1974). Adult beetles typically attack trees in August and lay

eggs, which complete their development cycle into mature

adults approximately 1 year later (Amman & Cole, 1983). The

mountain pine beetle uses two tactics to overcome the defenses

of a healthy tree. First, the beetles may attack in large numbers

through a cooperative behaviour termed as a mass attack. By

rapidly concentrating their attack on selected trees, the beetles

are capable of exhausting the host’s defensive response

(Berryman, 1976; Berryman et al., 1989; Raffa & Berryman,

1983; Safranyik et al., 1974). Secondly, the beetles have a close

association with several microorganisms, which the beetles

carry into the tree with them when they attack. In particular, the

spores of two blue stain fungi (Ophiostoma clavigerum and

Ophiostoma montium) are inoculated into the tree as the beetles

bore through the tree’s bark. These fungal spores penetrate

living cells in the phloem and xylem (Ballard et al., 1982,

1984; Safranyik et al., 1975; Solheim, 1995), resulting in

desiccation and disruption of transpiration (Mathre, 1964),

effectively stopping resin production by the tree (Carroll &

Safranyik, 2004).

Immediately following a mass attack, the foliage of trees

remains visibly unchanged; however, a drop in sapwood

moisture has been measured as a consequence of the attack

(Reid, 1961; Yamaoka et al., 1990). Once the tree is killed, but

still with green foliage, the host tree is in the green-attack stage.

The first visible sign of impact is a change in foliage colour

from green to greenish-yellow that usually begins in the top of

the crown. These trees are referred to as faders. Generally, the

foliage fades from green to yellow to red over the spring and

summer following attack (Amman, 1982; Henigman et al.,

1999). The leaves gradually desiccate and the pigment

molecules break down; initially the green chlorophyll pigment

molecules are lost, then the yellow carotenes and red

anthocyanins (Hill et al., 1967). Slowly, the needles drop until

the tree is completely defoliated. Twelve months after being

attacked over 90% of the killed trees will have red needles (red-

attack). Three years after being attacked, most trees will have

lost all needles (gray-attack) (British Columbia Ministry of

Forests, 1995). There is variability associated with the

progression of attack stages; the rate at which the foliage will

discolour varies by species and by site (Safranyik, 2004).

Mountain pine beetle success at higher elevations has

typically been considered limited due to a lack of sufficient
thermal energy to complete the life cycle in a single year

(Amman, 1973). A univoltine (single brood per year) life cycle

is considered a basic requirement to maintaining an appropriate

seasonality and therefore population success (Amman, 1973;

Logan & Bentz, 1999; Safranyik, 1978). However, increasing

temperatures observed in the past 5 to 10 years may be

nullifying the effect of elevation, as successful univoltine

mountain pine beetle populations are currently being observed

in pine ecosystems as high as 3000 m (Logan & Powell, 2001).

In areas with more extreme topographic relief and where

conditions are considered marginal for the establishment of a

mountain pine beetle population (Amman, 1973; Logan &

Powell, 2001), topographic attributes such as elevation, slope,

and solar radiation may have a stronger influence on the

efficacy of beetle infestations.

The infrared and short-wave infrared channels of the

Landsat sensor are known to be particularly sensitive to

changes in forest structural changes (Horler & Ahern, 1986).

Image transformations that exploit changes over time in the

infrared and short-wave infrared channels have shown success

in mapping subtle forest changes resulting from insect

disturbance (Price & Jakubauskas 1998), through to stand

replacing disturbances such as harvests (Cohen et al., 1995).

Single date mapping of red-attack is based upon the contrast in

attacked stands in relation to non-attack stands. While

reasonable classification accuracies may be found

(73.3%T6.7%, a=0.05) issues with omission and commission

error may emerge (Franklin et al., 2003). To address limitations

related to mapping a change feature with single date imagery,

change detection approaches were developed and applied.

Following examples in the literature illustrating the strength of

approaches based upon the tasselled cap transformation (TCT)

for capturing change, the Enhanced Wetness Difference Index

(EWDI) was developed (Franklin et al., 2000, 2001). The

Skakun et al. (2003) approach is based upon the application of

a user defined threshold to the differences found between a

spectral index generated from two dates of imagery. The results

of this type of threshold based approach are products that are

binary in nature, with pixels identified as either having red-

attack damage, or not having red-attack damage. Attribute

specific red-attack accuracy (a =0.05) ranged from 76% to

81% (as stratified by level of attack: for groups of 10–29 red-

attack trees=76%T12%, and for groups of 30–50 red-attack

trees=81%T11%) (Skakun et al., 2003).

The objectives of the research conducted for this paper were

two-fold. The first objective was to build on past research

undertaken by Skakun et al. (2003), by using a logistic

regression approach to generate products indicating a range

of red-attack likelihood, rather than a binary indication of red-

attack and non-attack. The second objective was to capitalize

upon the opportunity afforded by using a logistic regression

based approach to include additional spatial information layers

in the mapping algorithm. Rather than a disturbance feature

mapping approach based solely upon remotely sensed data, we

explore the influence of topographic and solar radiation

variables on the estimation of red-attack damage in an area

of mixed forest and variable terrain.
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2. Study area

Located in Western Montana, the Lolo National Forest

contains a highly diverse range of forest ecosystems (Fig. 1) and

is mountainous, with elevations ranging from 940 to 1524 m.

The dominant forest type in the area is mixed conifer, which

includes subalpine fir (Abies lasiocarpa), mountain hemlock

(Tsuga mertensiana), western hemlock (Tsuga heterophylla),

larch (Larix occidentalis), grand fir (A. grandis), Douglas-fir

(Pseudotsuga menziesii), and lodgepole pine (Pinus contorta).

The current forest inventory (circa 2004), indicates that the

dominant single species, by area, is Douglas-fir (47% of the

study area), followed by lodgepole pine (16% of the study area).

Aerial overview surveys indicate that the mountain pine beetle

first appeared in this area in 1994. In 2004, the area had 4500 ha

of trees killed by mountain pine beetle (mostly lodgepole pine).

The study area has experienced an unprecedented 7-year period

of drought, and prolonged drought has been shown to contribute
Fig. 1. Location of the study area
to the increased susceptibility of pine forests to attack by

mountain pine beetle (Safranyik, 2004; Safranyik et al., 1975).

The spatial nature of the mountain pine beetle population within

the region is characterized by small and widely scattered groups

of red- and gray-attack trees. Locations of red-attack damage in

2001, 2002, and 2003, as identified in the aerial overview

survey data, are shown in Fig. 2.

3. Data and methods

3.1. Ground surveys to identify forest stands with red-attack

damage

Although the forest conditions within the study area were

mixed conifer, field measurements, which were collected

annually from 1999 to 2002, were restricted to areas dominated

by lodgepole pine. The objective of this study was to use the

Landsat imagery to detect and map mountain pine beetle red-
in the Lolo National Forest.



Fig. 2. Aerial overview survey data for the study area collected in 2001, 2002, and 2003.

M.A. Wulder et al. / Remote Sensing of Environment 101 (2006) 150–166 153
attack trees in 2002, hence field measures of red-attack damage

collected during the months of August and September in both

2001 and 2002, were used.

A total of 13 and 30 plots were established in 2001 and

2002, respectively. In both years, each plot consisted of a grid

of 30 m�30 m (0.09 ha) sub plots, either 3�3 in 2001 or

2�2 in 2002, resulting in 117 sub plots in 2001 and 120 in

2002. The sampling intensity was altered in 2002 to facilitate

an increase in the number of sites across the area. In all cases

the plots were oriented in a north–south direction, diameter at

breast height (dbh) was measured for all trees, with each tree

assigned a species and attack code, as indicated in Table 1. The

attack code was determined by examining the tree for evidence

of mountain pine beetle. This evidence includes the presence of

pitch tubes and/or boring dust around the base of the tree, as

well as beetle galleries and developing brood under the bark of

the tree (Safranyik et al., 1975). In addition, the colour of the

tree crown is examined and recorded. The colour of the crown,

combined with evidence of beetle activity determines which of

the five codes are assigned to the tree.

The location information of each site was verified by locating

the plot coordinates in a Geographic Information System (GIS)

and comparing the location (using imagery and planimetric base
Table 1

Codes assigned to ground samples

Code Description

1 Live and not currently infested

2 Current mountain pine beetle attack

3 Attacked previous year

4 Attacked 2 years previous

5 Attacked more than 2 years previous
maps) to the detailed sketch maps drawn by the field crews at

each plot. Of the 237 plots available, two sites (16 plots) were

dropped due to errors in positioning, leaving 213 plots remaining.

Since the objective was to identify red-attack trees in 2002

and the infestation in this area had been on-going for a number

of years, we chose to stratify the 213 plots by the presence of

red-attack crowns in the stand, and then further stratify these

plots by the percentage of gray-attack trees. Based on the

mountain pine beetle life cycle, plots with a presence of a gray-

attack trees must have first been attacked either in, or prior to,

1999. As a result, the selection of ground survey plots for use

as calibration or validation data was restricted to those plots

that had less than 25% gray-attack. This resulted in a reduced

sample of 136 plots. From this sample, approximately half of

the plots were randomly selected for calibration of the

classification algorithm and the other half were retained as

independent validation data. Distributions of the variables in

the two data sets were examined to ensure that each were

similar for attributes of interest, such as percent gray-attack,

elevation, slope, and solar radiation. The spatial distribution of

the ground plots is presented in Fig. 3.

3.2. Landsat ETM+ imagery

Landsat 7 ETM+ imagery were acquired for August 26,

1999 and August 18, 2002. The 1999 image was geometrically

rectified to Universal Transverse Mercator (UTM), Zone 11 N,

North American Datum 1927 using planimetric base data. The

2002 image was geometrically registered to the 1999 image

with a root mean square error of less than 0.4 pixel using 26

ground control points, a second-order polynomial transforma-

tion, and nearest neighbour interpolation. A top-of-atmosphere



Fig. 3. Distribution of ground samples across the study area.

M.A. Wulder et al. / Remote Sensing of Environment 101 (2006) 150–166154
(TOA) correction was applied to both image dates to convert

them to TOA reflectance (Markham & Barker, 1986). This

correction accounts for differences in sensor and viewing

geometry, but does not correct for variations in absolute

atmospheric conditions between images.

3.3. Image analysis to identify non-attacked forest stands

A sample of non-attacked trees was required for the

classification procedure and for validation; without these data,

errors of commission and omission associated with the

detection of red-attack damage could not be characterized

(Wulder et al., 2004). However, the ground survey did not

collect any data for plots that were not attacked. This lack of

field data combined with the retrospective nature of the

analysis (using 1999 and 2002 imagery) confounded efforts

to obtain calibration and validation data for the non-attack

class. In the absence of aerial photography or other suitable

high spatial resolution data (collected at the same time as the

Landsat data), an image based source of calibration and

validation data was considered the best alternative. A sample

of non-attacked stands was therefore generated by calculating

the greenness component of the Tasselled Cap Transformation

(TCT) for the 2002 Landsat image using coefficients developed

Huang et al. (2002). The greenness component of the TCT

indicates the abundance and vigour of the vegetation cover

(Crist & Kauth, 1986; Dymond et al., 2002; Gong et al., 2003;

Healy et al., 2005), and is designed to be orthogonal from the

other TCT components. To assess this, the correlation between

TCT greenness and wetness values in areas dominated by

lodgepole pine was tested. For the 2002 Landsat 7 ETM+

image, the mean wetness value was �19.36 (SD=18.78) and

the mean greenness value was 15.36 (SD=10.97). Pearson’s

correlation supports the hypothesis that there is no significant

correlation between wetness and greenness TCT components
for 2002 (r(914095)=0.1204, p <0.05). The assumption was

made that pixels having high greenness values would be less

likely to contain large numbers of red-attack trees.

A mask was generated from the forest inventory, which

included all of the forest stands that had pine as the leading

species. All of the greenness values located under this pine

mask were extracted and sorted by magnitude; the largest 1000

greenness values were retained and a random sample of 136

values was selected. To ensure that the sample was represen-

tative of forest conditions captured at the red-attack sample

locations, the mean crown closures for the red-attack and non-

attack samples were tested and found to not be significantly

different (as determined using a two-sided t-test, t(161)=1.97,

p =0.87). The result of the image analysis described above is a

representative sample of non-attack pixels in those areas of the

study site dominated by lodgepole pine, which complements

the sample of red-attack pixels collected. Half of the non-

attacked sample was randomly selected for calibration, and half

were retained as independent validation data.

3.4. Enhanced wetness difference index

The Tasseled Cap Transformation is a reduction in the six

reflectance channels of a single date of Landsat imagery to

three components: brightness, greenness, and wetness (Crist &

Cicone, 1984; Crist et al., 1986; Kauth & Thomas, 1976). The

wetness component of the TCT is generated for each of the

images using the following equation (Huang et al., 2002):

Wetness ¼ 0:2626 ETMþ 1ð Þ þ 0:2141 ETMþ 2ð Þ

þ 0:0926 ETMþ 3ð Þ þ 0:0656 ETMþ 4ð Þ

� 0:7629 ETMþ 5ð Þ � 0:5388 ETMþ 7ð Þ ð1Þ

where ETM+N =Enhanced Thematic Mapper Band N.
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The term ‘‘Enhanced Wetness Difference Index’’ or

EWDI, was first used by Franklin et al. (2000). In this

study, visual interpretation of change between 1997 and 1998

was facilitated by displaying the TCT wetness component for

1998 through the green and blue colour guns of the display,

while the TCT wetness component for 1997 was displayed

through the red colour gun of the display. A linear stretch

was applied to increase contrast. The result is an image in

the display where a decrease in wetness from 1997 to 1998

is depicted in various shades of red; an increase in wetness

from 1997 to 1998 is depicted in various shades of blue/

green; and no change between the 2 years is depicted in

white. An example of this display for the Lolo study area is

provided in Fig. 4. Although the wetness index values used

for analysis and thresholding are derived by subtracting the

TCT wetness component for 1 year from the TCT wetness

component for a second year, the term EWDI has persisted

in studies subsequent to Franklin et al. (2001), including

those where visual interpretation of change was not the

method used to identify change (e.g., Franklin et al., 2002,

2003, 2005; Skakun et al., 2003; Wulder et al., 2005). The

wetness index approach used in this paper builds on past

work by Franklin et al. (2003) and Skakun et al. (2003). The

EWDI has been demonstrated as an effective means for

detecting red-attack damage. Cohen et al. (2003) characterize

the advantages of incorporating multiple dates of imagery to

strengthen regression models; however, they emphasize the

utility of integrating these multiple dates into a single index

for regression modeling. This is the approach applied in this

analysis.
Fig. 4. The enhanced wetness difference index (EWDI). Areas in red indicate decrea

indicate increases in moisture and white areas indicate no change. (For interpretation

version of this article).
The EWDI is generated by subtracting the wetness values

from the most recent image date (T2) from the wetness values

from the older image date (T1). Therefore:

EWDI ¼ T1� T2 ð2Þ

Areas where moisture has decreased from year T1 to year

T2 will generally have positive EWDI values. Conversely,

areas where moisture has increased from year T1 to year T2

will generally have negative values. Areas where there is no

change in moisture will typically have EWDI values close to

zero. The magnitude of the positive or negative EWDI values is

indicative of the magnitude of the moisture difference between

the two image dates. Fig. 5 shows an example of the

distribution of EWDI values for forest that is not attacked

versus EWDI values for forest with red-attack damage. Change

in the wetness values between the two dates is a general

indicator of conifer mortality; the wetness component captures

the mid-infrared changes and is considered the most consistent

single indicator of forest change (Collins & Woodcock, 1996).

3.5. Digital elevation model

Digital elevation data of the area was produced by the

United States Geological Survey as part of the National

Elevation Dataset (NED) using 1 :60,000 photography, and

resulting in a seamless mosaic digital elevation model (DEM)

at 30 m spatial resolution (United States Geological Survey,

1999). A key feature of the NED DEM is the comprehensive

pre-processing procedures, which reduce errors and facilitate

the calculation of derivatives such as slope; slope was
ses in moisture between the two image dates (1999 and 2002), while blue areas

of the references to colour in this figure legend, the reader is referred to the web
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estimated within a window of 3�3 cells using the average

maximum technique (Burrough, 1986; Oksanen & Sarjakoski,

2005).

3.6. Solar radiation

Direct clear-sky solar radiation was calculated using the

equation developed by Kreith and Kreider (1978) and

implemented using a process developed by Kumar et al.

(1997). Direct solar radiation is defined as the radiation

received directly on a horizontal surface, without any

absorption or scattering. Diffuse solar radiation is defined as

that portion of the solar radiation that is scattered downwards

by the molecules in the atmosphere. Diffuse solar radiation

varies between summer and winter and is a function of solar

altitude and terrain reflectance. Global solar radiation is

calculated by summing direct and diffuse solar radiation. Solar

radiation and related variables can aid in the prediction of

vegetation type and growth (Franklin, 1995). Kumar et al.

(1997) provide scripts (coded in Arc Macro Language), which

use a DEM as input to calculate short-wave direct and diffuse

radiation received at the surface of the earth over a specified

period of time.
Table 2

Parameters and fit statistics for the logistic regression model with only EWDI as p

Model parameters Wald test

Parameter a i Wald S

Intercept 0.763748701 8.281 0

EWDI 0.160302107 28.578 0

eb =1.17386545 percent chg. in odds=17.38%
3.7. Logistic regression model

The discrete nature of the dependent variable (i.e., red-attack,

non-attack) was well suited to the use of logistic regression.

Logistic regression has become a widely used and accepted

method of analysis of binary outcome variables as it is flexible

and predicts the probability for the state of a dichotomous

variable (i.e., red-attack, non-attack) based on predictor vari-

ables (e.g. EWDI, slope, solar radiation) and has widely been

applied in forestry to estimate tree and stand survival under

competition (e.g., Monserud, 1976; Monserud & Sterba, 1999;

Shen et al., 2000; Yao et al., 2001; Vanclay, 1995). In the field of

remote sensing, logistic regression has been used for land cover

change detection (e.g., Fraser et al., 2003, 2005) and for

mapping insect tree defoliation (Ardö et al., 1997; Fraser &

Latifovic, 2005; Lambert et al., 1995; Magnussen et al., 2004).

Lambert et al. (1995) used dichotomous logit regression to

discriminate among three defoliation categories of Norway

spruce in the Czech Republic using Landsat TM imagery, with

accuracies ranging from 76% to 88%. Magnussen et al. (2004)

developed a logistic regression model for spatially explicit

predictions of the likelihood of an onset of stand-level spruce

budworm (Choristoneura fumiferana) defoliation.
redictor of red-attack damage

Nagelkerke’s R2 Hosmer and Lemeshow’s goodness of fit test

ig. R2 Chi-square Sig.

.004 0.454 26.085 0.001

.000
p ¼ 1

1þ e� a0þa2EWDIð Þ



Fig. 6. Output of logistic regression model using (A) EWDI only and (B) EWDI with elevation and slope.
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The logistic regression model presented here has a depen-

dent variable that is transformed into a logit variable, calculated

as the neperian logarithm (ln) of the probability of a certain event

occurring ( p) divided by the probability of no event ( q =1�p)

(Bergerud, 1996). Then, the linear logistic model is fitted by the

method of maximum likelihood, estimating the probability of

success for binary response data. Generalized for k independent

explanatory variables (x1 ,. . .,xk) the logistic regression model

can be presented as in Eq. (3) (Noruxis, 2005):

ln p=qð Þ ¼ a0 þ a1x1 þ . . . þ akxk ð3Þ
where: ln is the neperian logarithm, p the probability of success

(i.e., attacked), q the probability of failure ( p +q =1), a0 and a1

are constants, and xi is a variable which can be continuous or

discrete and randomly distributed or not. The model can be also

expressed using Eq. (4), which allows straightforward calcu-

lation of the probability of the binomial process (i.e., attacked)

for different values of the independent variables xi:

p ¼ 1

1þ e� a0þa1x1þ...þak xkð Þ ð4Þ

Logistic regression calculates changes in the logit variable,

not in the dependent itself, as is the case with ordinary least



Table 3

Results of the validation of the logistic regression model using EWDI for red-attack mapping

Predictor: EWDI Logistic model Producer’s accuracy Omission error

Non-attack Red-attack Total

Reference data Non-attack 53 11 64 82.81% 17.19%

Red-attack 21 43 64 67.19% 32.81%

Total 74 54 128 Overall accuracy

User’s accuracy 71.62% 79.63% Lower CI Value Upper CI

Commission error 28.38% 20.37% 66.82% 75.00% 81.69%

Confidence intervals calculated at 95% confidence coefficient.
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squares regression (OLS) (Hosmer & Lemeshow, 2000), which

enables the method to overcome many of the restrictive

assumptions of OLS regression (Press & Wilson, 1978). As a

result, the dependent variable need not be normally distributed,

there is no homogeneity of variance assumption, error terms do

not need to be normally distributed, and independent variables

do not need to be interval or unbounded (Rice, 1994).

The interpretation of a logistic regression coefficient, b, is

not as straightforward as that of a linear regression coefficient,

and hence the coefficients are often converted into odds ratios

by exponentiating the coefficient (Bergerud, 1996; Noruxis,

2005). eb represents the ratio-change in the odds of the event of

interest (red-attack) for a one-unit change in the predictor.

Therefore, eb informs about the amount of change in the odds

of being attacked relative to changes in the independent

variable, while the sign of the b coefficient indicates whether

an increase in one dependent variable involves an increase or a

decrease in the probability of a pixel having red-attack damage.

To further ease interpretation, the eb may be converted to a

percentage change in odds using Eqs. (5) and (6):

eb ¼ odds after the change in X

odds before the change in X
ð5Þ

eb � 1
� �

T100 ð6Þ

The logistic model assumes that all independent variables in

the regression model are relevant, the dependent variable is

independently and randomly sampled, the probability of the

dependent variable is a logit function of the independent

variables (Bergerud, 1996), and that there is no multicollinear-

ity and absence of outliers (Rice, 1994). Moreover, large

samples are required, because the maximum likelihood

estimation (MLE) involves a decline in reliability of estimates

when there are few cases for each observed combination of
Table 4

Parameters and fit statistics for the logistic regression model with EWDI, elevation

Model parameters Wald test

Parameter a i Wald

Intercept �7.195706474 3.968

EWDI 0.104107643 11.356

eb =1.10971990 percent chg. in odds=10.97

Elevation (m) 0.006815873 11.132

eb =1.00683915 percent chg. in odds=0.68

Slope (-) �0.170123606 8.413

eb =�0.84356054 percent chg. in odds=�15.64
independent variables. Peduzzi et al. (1996) recommend a

minimum of 10 observations per parameter in the model.

The linear logistic regression model was fitted and validated

using the SPSSi software (SPSS for Windows, Release 13.0,

2004. Chicago: SPSS Inc.). The convention for binomial

logistic regression was followed and the dependent class of

greatest interest (i.e., red-attack) was coded as 1, and the another

class (i.e., non-attack) as 0. A forward selection method was

used to establish the most significant input variables, and the

results compared to those obtained by using the backwards

selection method. A threshold was set to assign data to each

class (red-attack or non-attack) according to the predicted

probability value; the selected threshold of 0.5 means that if the

probability of belonging to class 1 (red-attack) is higher than 0.5

(50%), that point would be assigned to the red-attack class.

3.8. Model validation

Model validation was performed calculating fit statistics and

prediction errors (Tables 2 and 4). Strength of association was

assessed by the Nagelkerke’s R-Square (R2), which is a further

modification of the Cox and Snell coefficient so that it varies

between 0 to 1 (Nagelkerke, 1991). It can be interpreted in a

similar way to the OLS multiple R2, although it usually reaches

lower values and it is based on likelihood (Noruxis, 2005). The

Hosmer and Lemeshow’s Goodness of Fit Test (Hosmer &

Lemeshow, 2000) tests the null hypothesis that the data were

generated by the model fitted by the researcher. If the p value is

greater than 0.05, the model’s estimates fit the data at an

acceptable level at 95% of probability. The Wald statistic tested

the null hypothesis in logistic regression that a single

coefficient was zero, verifying the significance of individual

logistic regression coefficients for each independent variable

(Noruxis, 2005). In addition, the adjusted logistic model was
, and slope as predictors of red-attack damage

Nagelkerke’s R2 Hosmer and Lemeshow’s goodness of fit test

Sig. R2 Chi-square Sig.

0.046 0.684 7.164 0.519

0.001
p ¼ 1

1þ e� a0þa2EWDIþa3Elevationþa4Slopeð Þ
0.001

0.004



Table 5

Results of the validation of the logistic regression model using EWDI, elevation, and slope as predictors for red-attack mapping

Predictors: EWDI, elevation, slope Logistic model Producer’s accuracy Omission error

Non-attack Red-attack Total

Reference data Non-attack 57 7 64 89.06% 10.94%

Red-attack 11 53 64 82.81% 17.19%

Total 68 60 128 Overall accuracy

User’s accuracy 83.82% 88.33% Lower CI Value Upper CI

Comission error 16.18% 11.67% 78.84% 85.94% 90.89%

Confidence intervals calculated at 95% confidence coefficient.
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applied to the validation dataset, and the error matrix for the

binary variable (predicted versus observed) was generated,

omission and commission errors were determined, and related

confidence intervals calculated at 95% confidence coefficient

(Czaplewski, 2003). The overall accuracy and true positive rate

were also calculated. The true positive rate is the attribute

specific accuracy for red-attack; this measure reports how

many red-attack trees identified from the image source were

actually identified in the validation data (e.g. Producer’s

accuracy).

4. Results

Two distinct models were developed for the area of the

study site identified as lodgepole pine in the forest inventory;

the first included only the EWDI values as input, using the

non-attack and red-attack calibration dataset to generate a

probability of red-attack damage from 0 to 1 (Fig. 6A). The

parameters of this logistic regression model are provided in

Table 2 and indicate that this model is weak: Nagelkerke’s R2

was 0.454; Hosmer and Lemeshow was <0.05 (model

estimates do not fit the data within an acceptable level at the

95% confidence level); and the Wald statistic indicates that the

EWDI was significant to the model. The odds ratio, eb, and the

percentage change in the odds ratio are shown in Table 2. A

unit increase in EWDI, results in an increase of the odds of a

pixel having red-attack damage by 17%.

For validation purposes, the cut-off value used to discrim-

inate between attacked and non-attacked was 50%. Therefore,

if a pixel had a probability of red-attack of less than 0.5, the

pixel was considered non-attacked. Conversely, if the pixel had

a value of greater than 0.5, the pixel was considered attacked.

Using these threshold values, 44% of the forest inventory

polygons had red-attack damage, accounting for 8% of the total

study area, and 35% of the total area of pine forest. The results

indicate a heterogeneous distribution of attack damage (Fig.

6A). The accuracy of the model output was assessed using a set

of independent validation data (previously reserved from the

collected ground data) (Table 3). The overall accuracy of the

EWDI model was 75% with a 95% confidence interval of 67%

to 82%. True positive accuracy for red-attack damage was

67%.

The second model incorporated the EWDI values with

elevation, slope, and global, direct, and diffuse radiation in a

logistic regression with a forward stepwise selection method.

The parameters of this logistic regression model are provided
in Table 4 and indicate that this model is strong; Nagelkerke’s

R2 was 0.684; Hosmer and Lemeshow was >0.05 (model

estimates do fit the data within an acceptable level at the 95%

confidence level); and the Wald statistic indicates that the

EWDI, elevation, and slope were significant to the model.

None of the radiation variables were found to be significant to

the classification in the forward stepwise selection process and

were therefore excluded from the development of the model.

The odds ratios for this model and the percentage change in

the odds ratios are included in Table 4. Per unit changes in

EWDI or elevation result in an increase of 11% and 0.7%,

respectively, in the odds of red-attack damage. Conversely,

increases in slope result in a decrease in the odds of red-attack

damage by 15.64%.

The distribution of probabilities of red-attack damage

appeared quite different than those from the model generated

using the EWDI values only (Fig. 6B). The overall accuracy of

the model output, assessed using independent validation data

was 86% with 95% confidence intervals of 79% to 91% (Table

5). The true positive accuracy for red-attack detection was

83%. Using the same threshold values as for the first model

(50%), the total number of forest inventory polygons with red-

attack damage was 64%, accounting for 5% of the study area,

and 20% of the area dominated by pine forest.

5. Discussion

The EWDI has been effectively used to detect forest

disturbances (Franklin et al., 2002, 2003, 2005). The EWDI,

as generated from multi-date Landsat imagery, has also been

successfully used to detect and map mountain pine beetle

red-attack damage at the landscape level (Coops et al., in

review; Skakun et al., 2003). Areas of mixed forest are more

challenging for mapping red-attack damage with a medium

resolution sensor such as Landsat, since the host species has a

more sparse and heterogeneous spatial distribution. In addition,

areas of variable terrain present unique challenges for the

classification of remotely sensed imagery, as shadows and

differences in surface orientation can increase the spectral

variability associated with a given cover type or target of

interest.

The objective of this research was to build on experience

using multi-date techniques for red-attack detection with

Landsat imagery. The full distribution of EWDI values were

used to estimate the probability of red-attack damage, rather

than relying on the analyst’s judgement to select a threshold



Fig. 7. Variation in overall accuracy, commission and omission errors.
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based on a set of calibration samples. As Fig. 5 illustrates, there

is overlap between the distributions of EWDI values for red-

attack and non-attack forest stands. When a threshold for red-

attack is selected, the analyst must attempt to minimize the

commission error (or omission error—depending on the

information need), which becomes increasingly difficult in

mixed forest conditions.

A logistic regression approach was used in this study to

model the probability of mountain pine beetle red-attack

damage across the study area. Independent calibration samples,

representing red-attack and non-attack forest stands, were input

into the logistic regression model. The output from the logistic

regression is a probability surface with values ranging from 0
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Fig. 9. Slope distribution for lodgepole pine (Pinus contorta) a
to 1, indicating the likelihood that any given pixel has red-

attack damage. Arbitrary thresholds may still be used to

determine the accuracy of the classification or to produce a

simple presence/absence map of red-attack damage; however,

the continuous probability surface of red-attack damage offers

greater flexibility from a forest management perspective. For

example, with the continuous probability surface, questions

such as how much of the study area had a greater than 75%

likelihood of having red-attack damage (9% of the study area),

how many inventory polygons contained likelihoods of greater

than 75% (55% of inventory polygons) can be addressed.

Such a continuous assessment of the potential for red-attack

damage across the landscape allows forest managers to provide
27.5 32.5 37.5 42.5 47.5 52.5

ope (°)

Lodgepole pine

nd Douglas-fir (Pseudotsuga menziesii) in the study area.
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a flexible representation of attack damage conditions (Fig. 7).

For example, forest managers may use a more stringent

definition of attack when minimizing errors of commission is

paramount (e.g., in an outbreak scenario, like that which is

currently being experienced in western Canada and the United

States). In this case, forest managers may elect to focus on

those areas with a greater than 70% probability of having red-

attack damage, thereby reducing the likelihood that field crews

will be dispatched to locations erroneously identified as red-

attack. Alternatively, a more liberal definition of damage could

be considered when errors of omission are more of a concern,

such as when populations of mountain pine beetle are

increasing in the incipient-epidemic phase. In this case, forest

managers may opt to consider all areas with a greater than 50%

probability of having red-attack damage.

Another objective of this project was to incorporate

elevation, slope, and solar radiation information into the red-

attack mapping. To this end, these attributes were added to the

logistic regression model described above. It was found that the

use of elevation and slope improved the accuracy of red-attack

detection, when compared to the model using EWDI values

only (Tables 3 and 5). The greater accuracy achieved with this

method is explained largely by the nature and distribution of

the host species in the study area. The Lolo National Forest

is an area of mixed forest, with a heterogeneous spatial

distribution of species. In this portion of the Lolo National

Forest, the elevation range is approximately 1000 m. Elevation

and slope are important determinants of forest composition and

structure, influencing the distribution of forest species across

the landscape. Lodgepole pine, the primary host species for

mountain pine beetle, are found at higher elevations in this area

(Fig. 8) (e.g., along ridge tops) with relatively lower slopes

(Fig. 9), when compared to the distribution of elevation and

slope for Douglas-fir, the dominant species in the study area.
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Fig. 10. Global radiation distribution for lodgepole pine (Pinus conto
The moisture differences between the 2 years of imagery used

to generate the wetness index (1999 and 2002) were also

heterogeneous, as indicated by the EWDI output in Fig. 4.

In the extreme extents of the beetle’s elevational and

climatic range, it can take up to 2 years for the beetle to

complete its life cycle, exposing the beetle to increased

predation and cold mortality. Amman (1973) found that

elevation can severely restrict beetle population. It is for this

reason that beetles primarily concentrate at lower elevations;

however, what is considered a high or low elevation is a

relative concept, in relation to latitude (Logan & Powell, 2001).

Elevation and latitude/longitude affect the survival of the beetle

and therefore form an important part of susceptibility models

(Shore & Safranyik, 1992). Wulder et al. (2005) characterized

the slope, aspect, and elevation of known red-attack locations

in a 5000 km2 study area in central British Columbia. In this

particular area, with gently rolling glacial deposits and an

elevation range of 600 to 800 m above sea level, slope, aspect,

and elevation were not identified as key characteristics of

beetle attack. In contrast, Coops et al. (in review) found that

slope was an important factor in characterizing the preferential

attack of mountain pine beetles in areas that had not previously

supported infestations. Coops et al. (in review) examined new

mountain pine beetle infestations in an area of northeastern

British Columbia, with elevations ranging from 221 to 2945 m.

Solar radiation (global, direct, and diffuse) was the other

variable that was considered important for predicting the

likelihood of red-attack damage. It is known that mountain

pine beetle prefer south facing slopes, as these areas generally

receive more solar radiation and are therefore more conducive

to brood survival. None of the solar radiation attributes

considered were found to contribute significantly to the model,

and these attributes were therefore excluded from the model in

the forward stepwise selection process. The distributions of
19000 21000 23000 25000 27000

diation (J/m2)

Lodgepole pine

rta) and Douglas-fir (Pseudotsuga menziesii) in the study area.
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global solar radiation are similar for lodgepole pine and

Douglas-fir, and this may explain the lack of discriminating

power of these variables (Fig. 10).

The aerial overview survey data, presented in Fig. 2,

indicates broad areas of red-attack damage. The differences

in the representation of red-attack damage between the
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Fig. 11. Distribution of red-attack probabilities within areas of red-attac
overview surveys and the temporal sequence of Landsat

imagery methods have been documented (Wulder et al.,

2005); approaches using remotely sensed data are more

spatially explicit, while the aerial overview survey often

incorporates large areas of non-attack in its estimates of

damage. However, a comparison of the overview survey with
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the probabilities generated from the Landsat temporal sequence

in this study provides some insights on how the two logistic

regression models are functioning. The distribution of red-

attack probabilities (grouped into four classes, in 25%

increments), by the year of the overview survey, is provided

in Fig. 11. Both logistic regression models are very similar in

the 25% to 50% and in the 75% to 100% likelihood range,

with 15% to 20% of the surveyed area in 2001, 2002, and

2003 found in these two likelihood categories. Where these

models differ markedly is in the 0% to 25% and 50% to 75%

likelihood classes. Here, the model that incorporates the

EWDI, elevation, and slope assigns more of the surveyed

area to a lower likelihood of attack class. Conversely, the

model generated using only the EWDI values assigns more

of the surveyed area to a higher likelihood of attack class.

This comparison illustrates how the addition of ancillary

variables relevant to the stand conditions in the study area

can help to improve the accuracy of the red-attack damage

estimates.

6. Conclusion

As a result of the mixed forest conditions and variable

terrain in the study area, the logistic regression model that

incorporated moisture differences (EWDI), elevation, and

slope, more accurately predicted the likelihood of red-attack

damage, by a margin of 11% over the model that used moisture

differences alone. Solar radiation, in various forms (direct,

diffuse, and global), did not contribute any significant

improvement to model performance and was excluded.

The results of this study have several implications for the

use of satellite imagery to map mountain pine beetle red-attack

damage at the landscape level. The first is the generation of a

continuous probability surface to represent the likelihood of

red-attack damage, rather than the use of an arbitrary threshold

of EWDI values to identify red-attack locations. This proba-

bility surface provides forest managers with greater flexibility

in assessing and responding to a widespread mountain pine

beetle infestation.

The additional implication of these results is the demon-

strated utility of including other ancillary variables in the

determination of red-attack likelihood. The use of elevation and

slope in conjunction with the EWDI values produced a more

accurate representation of the likelihood of red-attack damage

than the model that relied solely on the EWDI values. These

results suggest that the accuracy of red-attack detection with

Landsat imagery can be improved by use of these additional

variables in areas where the conditions are suitable (e.g., mixed

forests, variable terrain).

Landsat data, and data from other remote sensing satellites

with similar spatial and spectral resolutions, provide a

valuable source of information regarding the location and

extent of mountain pine beetle infestations. These medium

resolution sensors afford the synoptic and spatially explicit

identification of red-attack damage at the landscape level, and

thereby form an important component of a larger data hie-

rarchy that relies on this cost-effective and coarser data to
guide the acquisition of more expensive and higher resolution

data sources.
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Ardö, J., Pilesjö, P., & Skidmore, A. (1997). Neural networks, multitemporal

Landsat Thematic Mapper data and topographic data to classify forest

damages in the Czech Republic. Canadian Journal of Remote Sensing, 23,

217–229.

Ballard, R. G., Walsh, M. A., & Cole, W. E. (1982). Blue-stain fungi in xylem

of lodgepole pine: A light microscope study on extent of hyphal

distribution. Canadian Journal of Botany, 60, 2334–2341.

Ballard, R. G., Walsh, M. A., & Cole, W. E. (1984). The penetration and growth

of blue-stain fungi in the sapwood of lodgepole pine attacked by mountain

pine beetle. Canadian Journal of Botany, 62, 1724–1729.

Bergerud, W. A., 1996. Introduction to logistic regression models with worked

forestry examples: biometrics information handbook no.7. Res. Br., British

Columbia Ministry of Forests, Victoria, B.C. Working Paper. 157 pp.

Berryman, A. A. (1976). Theoretical explanation of mountain pine beetle

dynamics in lodgepole pine forests. Environmental Entomology, 5,

1225–1233.

Berryman, A. A., Raffa, K. F., Millstein, J. A., & Stenseth, N. C. (1989).

Interaction dynamics of bark beetle aggregation and conifer defense rates.

Oikos, 56, 256–263.

British Columbia Ministry of Forests. (1995). Bark beetle management

guidebook. Forest practices code. Victoria, BC’ Forest Practices Branch.

45 pp.

Burrough, P. A. (1986). Principles of geographical information systems for

land resources assessment. Oxford’ Clarendon Press. 193 pp.

Carroll, A. L., & Safranyik, L. (2004). The bionomics of the mountain pine

beetle in lodgepole pine forests: Establishing a context. In T. L. Shore, J. E.

Brooks, & J. E. Stone (Eds.), Mountain pine beetle symposium: Challenges

http://mpb.cfs.nrcan.gc.ca


M.A. Wulder et al. / Remote Sensing of Environment 101 (2006) 150–166 165
and solutions (pp. 21–32). Victoria, Canada’ Pacific Forestry Centre,

Natural Resources Canada.
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